294 lines
12 KiB
C#
294 lines
12 KiB
C#
// --------------------------------------------------------------------------------------------------------------------
|
||
// <copyright file="HistogramSeriesExamples.cs" company="OxyPlot">
|
||
// Copyright (c) 2014 OxyPlot contributors
|
||
// </copyright>
|
||
// <summary>
|
||
// Creates example histograms
|
||
// </summary>
|
||
// --------------------------------------------------------------------------------------------------------------------
|
||
|
||
namespace ExampleLibrary
|
||
{
|
||
using System;
|
||
using System.Linq;
|
||
|
||
using ExampleLibrary.Utilities;
|
||
|
||
using OxyPlot;
|
||
using OxyPlot.Axes;
|
||
using OxyPlot.Series;
|
||
using System.Collections.Generic;
|
||
|
||
[Examples("HistogramSeries"), Tags("Series")]
|
||
public class HistogramSeriesExamples
|
||
{
|
||
[Example("Exponential Distribution")]
|
||
[DocumentationExample("Series/HistogramSeries")]
|
||
public static PlotModel ExponentialDistribution()
|
||
{
|
||
return CreateExponentialDistribution();
|
||
}
|
||
|
||
[Example("Exponential Distribution (logarithmic)")]
|
||
[DocumentationExample("Series/HistogramSeries")]
|
||
public static PlotModel ExponentialDistributionLogarithmicAxis()
|
||
{
|
||
return CreateExponentialDistribution(true);
|
||
}
|
||
|
||
[Example("Exponential Distribution (logarithmic,with BaseValue)")]
|
||
[DocumentationExample("Series/HistogramSeries")]
|
||
public static PlotModel ExponentialDistributionLogarithmicAxisWithBaseValue()
|
||
{
|
||
return CreateExponentialDistribution(true, baseValue: 0.1);
|
||
}
|
||
|
||
[Example("Label Placement")]
|
||
public static PlotModel HistogramLabelPlacement()
|
||
{
|
||
var model = new PlotModel { Title = "Label Placement" };
|
||
|
||
var s1 = new HistogramSeries { LabelPlacement = LabelPlacement.Base, LabelFormatString = "Base", StrokeThickness = 1, LabelMargin = 5 };
|
||
var s2 = new HistogramSeries { LabelPlacement = LabelPlacement.Inside, LabelFormatString = "Inside", StrokeThickness = 1, LabelMargin = 5 };
|
||
var s3 = new HistogramSeries { LabelPlacement = LabelPlacement.Middle, LabelFormatString = "Middle", StrokeThickness = 1, LabelMargin = 5 };
|
||
var s4 = new HistogramSeries { LabelPlacement = LabelPlacement.Outside, LabelFormatString = "Outside", StrokeThickness = 1, LabelMargin = 5 };
|
||
|
||
s1.Items.Add(new HistogramItem(1, 2, 4, 4));
|
||
s1.Items.Add(new HistogramItem(2, 3, -4, 4));
|
||
s2.Items.Add(new HistogramItem(3, 4, 2, 2));
|
||
s2.Items.Add(new HistogramItem(4, 5, -2, 2));
|
||
s3.Items.Add(new HistogramItem(5, 6, 3, 3));
|
||
s3.Items.Add(new HistogramItem(6, 7, -3, 3));
|
||
s4.Items.Add(new HistogramItem(7, 8, 1, 1));
|
||
s4.Items.Add(new HistogramItem(8, 9, -1, -1));
|
||
|
||
model.Series.Add(s1);
|
||
model.Series.Add(s2);
|
||
model.Series.Add(s3);
|
||
model.Series.Add(s4);
|
||
|
||
return model;
|
||
}
|
||
|
||
[Example("Label Placement (reversed Y Axis)")]
|
||
public static PlotModel LabelPlacementReversed()
|
||
{
|
||
return HistogramLabelPlacement().ReverseYAxis();
|
||
}
|
||
|
||
[Example("Label Format String")]
|
||
public static PlotModel LabelFormatString()
|
||
{
|
||
var model = CreateDisconnectedBins();
|
||
var hs = model.Series[0] as HistogramSeries;
|
||
hs.LabelFormatString = "Start: {1:0.00}\nEnd: {2:0.00}\nValue: {0:0.00}\nArea: {3:0.00}\nCount: {4}";
|
||
hs.LabelPlacement = LabelPlacement.Inside;
|
||
return model;
|
||
}
|
||
|
||
[Example("Custom Bins")]
|
||
public static PlotModel CustomBins()
|
||
{
|
||
return CreateExponentialDistributionCustomBins();
|
||
}
|
||
|
||
[Example("Disconnected Bins")]
|
||
public static PlotModel DisconnectedBins()
|
||
{
|
||
return CreateDisconnectedBins();
|
||
}
|
||
|
||
[Example("Normal Distribution Three Colors")]
|
||
public static PlotModel NormalDistribution()
|
||
{
|
||
return CreateNormalDistribution();
|
||
}
|
||
|
||
[Example("Individual Bin Colors")]
|
||
public static PlotModel IndividualBinColors()
|
||
{
|
||
return CreateIndividualBinColors();
|
||
}
|
||
|
||
[Example("Custom Item Mapping")]
|
||
public static PlotModel CustomItemMapping()
|
||
{
|
||
var model = new PlotModel { Title = "Custom Item Mapping" };
|
||
|
||
var s = new HistogramSeries { Mapping = obj => (HistogramItem)obj, TrackerFormatString = "{Description}"};
|
||
s.Items.Add(new CustomHistogramItem(1, 2, 4, 4, "Item 1"));
|
||
s.Items.Add(new CustomHistogramItem(2, 3, -4, 4, "Item 2"));
|
||
s.Items.Add(new CustomHistogramItem(3, 4, 2, 2, "Item 3"));
|
||
s.Items.Add(new CustomHistogramItem(4, 5, -2, 2, "Item 4"));
|
||
model.Series.Add(s);
|
||
|
||
return model;
|
||
}
|
||
|
||
public class CustomHistogramItem : HistogramItem
|
||
{
|
||
public CustomHistogramItem(double rangeStart, double rangeEnd, double area, int count, string description)
|
||
: base(rangeStart, rangeEnd, area, count)
|
||
{
|
||
this.Description = description;
|
||
}
|
||
|
||
public string Description { get; }
|
||
}
|
||
|
||
public static PlotModel CreateExponentialDistribution(bool logarithmicYAxis = false, double mean = 1, int n = 10000, double baseValue = 0)
|
||
{
|
||
var model = new PlotModel { Title = logarithmicYAxis ? "Exponential Distribution (logarithmic)" : "Exponential Distribution", Subtitle = "Uniformly distributed bins (" + n + " samples)" };
|
||
model.Axes.Add(
|
||
logarithmicYAxis ?
|
||
(Axis)new LogarithmicAxis { Position = AxisPosition.Left, Title = "Frequency"} :
|
||
new LinearAxis { Position = AxisPosition.Left, Title = "Frequency" });
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Bottom, Title = "x" });
|
||
|
||
Random rnd = new Random(1);
|
||
|
||
HistogramSeries chs = new HistogramSeries();
|
||
|
||
var binningOptions = new BinningOptions(BinningOutlierMode.CountOutliers, BinningIntervalType.InclusiveLowerBound, BinningExtremeValueMode.ExcludeExtremeValues);
|
||
var binBreaks = HistogramHelpers.CreateUniformBins(0, 5, 15);
|
||
chs.Items.AddRange(HistogramHelpers.Collect(SampleExps(rnd, mean, n), binBreaks, binningOptions));
|
||
chs.StrokeThickness = 1;
|
||
chs.BaseValue = baseValue;
|
||
chs.NegativeFillColor = OxyColors.Red;
|
||
model.Series.Add(chs);
|
||
|
||
return model;
|
||
}
|
||
|
||
public static PlotModel CreateExponentialDistributionCustomBins(double mean = 1, int n = 50000)
|
||
{
|
||
var model = new PlotModel { Title = "Exponential Distribution", Subtitle = "Custom bins (" + n + " samples)" };
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Left, Title = "Frequency" });
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Bottom, Title = "x" });
|
||
|
||
Random rnd = new Random(1);
|
||
|
||
HistogramSeries chs = new HistogramSeries();
|
||
|
||
var binningOptions = new BinningOptions(BinningOutlierMode.CountOutliers, BinningIntervalType.InclusiveLowerBound, BinningExtremeValueMode.ExcludeExtremeValues);
|
||
chs.Items.AddRange(HistogramHelpers.Collect(SampleExps(rnd, mean, n), new double[] { 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1.0, 2.0, 3.0, 4.0, 5.0 }, binningOptions));
|
||
chs.StrokeThickness = 1;
|
||
chs.FillColor = OxyColors.Purple;
|
||
model.Series.Add(chs);
|
||
|
||
return model;
|
||
}
|
||
|
||
public static PlotModel CreateNormalDistribution(double mean = 0, double std = 1, int n = 1000000)
|
||
{
|
||
var model = new PlotModel { Title = $"Normal Distribution (μ={mean}, σ={std})", Subtitle = "95% of the distribution (" + n + " samples)" };
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Left, Title = "Frequency" });
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Bottom, Title = "x" });
|
||
|
||
Random rnd = new Random(1);
|
||
|
||
HistogramSeries chs = new HistogramSeries();
|
||
var binningOptions = new BinningOptions(BinningOutlierMode.CountOutliers, BinningIntervalType.InclusiveLowerBound, BinningExtremeValueMode.ExcludeExtremeValues);
|
||
var binBreaks = HistogramHelpers.CreateUniformBins(-std * 4, std * 4, 100);
|
||
chs.Items.AddRange(HistogramHelpers.Collect(SampleNormal(rnd, mean, std, n), binBreaks, binningOptions));
|
||
chs.StrokeThickness = 1;
|
||
|
||
double LimitHi = mean + 1.96 * std;
|
||
double LimitLo = mean - 1.96 * std;
|
||
OxyColor ColorHi = OxyColors.DarkRed;
|
||
OxyColor ColorLo = OxyColors.DarkRed;
|
||
|
||
chs.ColorMapping = (item) =>
|
||
{
|
||
if (item.RangeCenter > LimitHi)
|
||
{
|
||
return ColorHi;
|
||
}
|
||
else if (item.RangeCenter < LimitLo)
|
||
{
|
||
return ColorLo;
|
||
}
|
||
return chs.ActualFillColor;
|
||
};
|
||
|
||
model.Series.Add(chs);
|
||
|
||
return model;
|
||
}
|
||
|
||
public static PlotModel CreateDisconnectedBins()
|
||
{
|
||
var model = new PlotModel { Title = "Disconnected Bins" };
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Left, Title = "Representation" });
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Bottom, Title = "x" });
|
||
|
||
HistogramSeries chs = new HistogramSeries();
|
||
chs.Items.AddRange(new[] { new HistogramItem(0, 0.5, 10, 7), new HistogramItem(0.75, 1.0, 10, 7) });
|
||
chs.LabelFormatString = "{0:0.00}";
|
||
chs.LabelPlacement = LabelPlacement.Middle;
|
||
model.Series.Add(chs);
|
||
|
||
return model;
|
||
}
|
||
|
||
public static PlotModel CreateIndividualBinColors(double mean = 1, int n = 10000)
|
||
{
|
||
var model = new PlotModel { Title = "Individual Bin Colors", Subtitle = "Minimum is Red, Maximum is Green" };
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Left, Title = "Frequency" });
|
||
model.Axes.Add(new LinearAxis { Position = AxisPosition.Bottom, Title = "Observation" });
|
||
|
||
Random rnd = new Random(1);
|
||
|
||
HistogramSeries chs = new HistogramSeries() { FillColor = OxyColors.Gray, RenderInLegend = true, Title = "Measurements" };
|
||
|
||
var binningOptions = new BinningOptions(BinningOutlierMode.CountOutliers, BinningIntervalType.InclusiveLowerBound, BinningExtremeValueMode.ExcludeExtremeValues);
|
||
var binBreaks = HistogramHelpers.CreateUniformBins(0, 10, 20);
|
||
var bins = HistogramHelpers.Collect(SampleUniform(rnd, 0, 10, 1000), binBreaks, binningOptions).OrderBy(b => b.Count).ToArray();
|
||
bins.First().Color = OxyColors.Red;
|
||
bins.Last().Color = OxyColors.Green;
|
||
chs.Items.AddRange(bins);
|
||
chs.StrokeThickness = 1;
|
||
model.Series.Add(chs);
|
||
|
||
return model;
|
||
}
|
||
|
||
private static IEnumerable<double> SampleExps(Random rnd, double mean, int count)
|
||
{
|
||
for (int i = 0; i < count; i++)
|
||
{
|
||
yield return SampleExp(rnd, mean);
|
||
}
|
||
}
|
||
|
||
private static double SampleExp(Random rnd, double mean)
|
||
{
|
||
return Math.Log(1.0 - rnd.NextDouble()) / -mean;
|
||
}
|
||
|
||
private static IEnumerable<double> SampleNormal(Random rnd, double mean, double std, int count)
|
||
{
|
||
for (int i = 0; i < count; i++)
|
||
{
|
||
yield return SampleNormal(rnd, mean, std);
|
||
}
|
||
}
|
||
|
||
private static double SampleNormal(Random rnd, double mean, double std)
|
||
{
|
||
// http://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform
|
||
var u1 = 1.0 - rnd.NextDouble();
|
||
var u2 = rnd.NextDouble();
|
||
return Math.Sqrt(-2 * Math.Log(u1)) * Math.Cos(2 * Math.PI * u2) * std + mean;
|
||
}
|
||
|
||
private static IEnumerable<double> SampleUniform(Random rnd, double min, double max, int count)
|
||
{
|
||
for (int i = 0; i < count; i++)
|
||
{
|
||
yield return rnd.NextDouble() * (max - min) + min;
|
||
}
|
||
}
|
||
}
|
||
}
|