227
Source/Examples/ExampleLibrary/Utilities/Sun.cs
Normal file
227
Source/Examples/ExampleLibrary/Utilities/Sun.cs
Normal file
@@ -0,0 +1,227 @@
|
||||
// --------------------------------------------------------------------------------------------------------------------
|
||||
// <copyright file="Sun.cs" company="OxyPlot">
|
||||
// Copyright (c) 2014 OxyPlot contributors
|
||||
// </copyright>
|
||||
// <summary>
|
||||
// Calculation of sunrise/sunset
|
||||
// </summary>
|
||||
// --------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
namespace ExampleLibrary
|
||||
{
|
||||
using System;
|
||||
|
||||
/// <summary>
|
||||
/// Calculation of sunrise/sunset
|
||||
/// </summary>
|
||||
/// <remarks>http://williams.best.vwh.net/sunrise_sunset_algorithm.htm
|
||||
/// based on code by Huysentruit Wouter, Fastload-Media.be</remarks>
|
||||
public static class Sun
|
||||
{
|
||||
private static double Deg2Rad(double angle)
|
||||
{
|
||||
return Math.PI * angle / 180.0;
|
||||
}
|
||||
|
||||
private static double Rad2Deg(double angle)
|
||||
{
|
||||
return 180.0 * angle / Math.PI;
|
||||
}
|
||||
|
||||
private static double FixValue(double value, double min, double max)
|
||||
{
|
||||
while (value < min)
|
||||
{
|
||||
value += max - min;
|
||||
}
|
||||
|
||||
while (value >= max)
|
||||
{
|
||||
value -= max - min;
|
||||
}
|
||||
|
||||
return value;
|
||||
}
|
||||
|
||||
public static DateTime Calculate(DateTime date, double latitude, double longitude, bool sunrise, Func<DateTime, DateTime> utcToLocalTime, double zenith = 90.5)
|
||||
{
|
||||
// 1. first calculate the day of the year
|
||||
int n = date.DayOfYear;
|
||||
|
||||
// 2. convert the longitude to hour value and calculate an approximate time
|
||||
double lngHour = longitude / 15.0;
|
||||
|
||||
double t;
|
||||
|
||||
if (sunrise)
|
||||
{
|
||||
t = n + ((6.0 - lngHour) / 24.0);
|
||||
}
|
||||
else
|
||||
{
|
||||
t = n + ((18.0 - lngHour) / 24.0);
|
||||
}
|
||||
|
||||
// 3. calculate the Sun's mean anomaly
|
||||
double m = (0.9856 * t) - 3.289;
|
||||
|
||||
// 4. calculate the Sun's true longitude
|
||||
double l = m + (1.916 * Math.Sin(Deg2Rad(m))) + (0.020 * Math.Sin(Deg2Rad(2 * m))) + 282.634;
|
||||
l = FixValue(l, 0, 360);
|
||||
|
||||
// 5a. calculate the Sun's right ascension
|
||||
double ra = Rad2Deg(Math.Atan(0.91764 * Math.Tan(Deg2Rad(l))));
|
||||
ra = FixValue(ra, 0, 360);
|
||||
|
||||
// 5b. right ascension value needs to be in the same quadrant as L
|
||||
double lquadrant = Math.Floor(l / 90.0) * 90.0;
|
||||
double raquadrant = Math.Floor(ra / 90.0) * 90.0;
|
||||
ra = ra + (lquadrant - raquadrant);
|
||||
|
||||
// 5c. right ascension value needs to be converted into hours
|
||||
ra = ra / 15.0;
|
||||
|
||||
// 6. calculate the Sun's declination
|
||||
double sinDec = 0.39782 * Math.Sin(Deg2Rad(l));
|
||||
double cosDec = Math.Cos(Math.Asin(sinDec));
|
||||
|
||||
// 7a. calculate the Sun's local hour angle
|
||||
double cosH = (Math.Cos(Deg2Rad(zenith)) - (sinDec * Math.Sin(Deg2Rad(latitude)))) /
|
||||
(cosDec * Math.Cos(Deg2Rad(latitude)));
|
||||
|
||||
// 7b. finish calculating H and convert into hours
|
||||
double h;
|
||||
|
||||
if (sunrise)
|
||||
{
|
||||
h = 360.0 - Rad2Deg(Math.Acos(cosH));
|
||||
}
|
||||
else
|
||||
{
|
||||
h = Rad2Deg(Math.Acos(cosH));
|
||||
}
|
||||
|
||||
h = h / 15.0;
|
||||
|
||||
// 8. calculate local mean time of rising/setting
|
||||
double localMeanTime = h + ra - (0.06571 * t) - 6.622;
|
||||
|
||||
// 9. adjust back to UTC
|
||||
double utc = localMeanTime - lngHour;
|
||||
|
||||
// 10. convert UT value to local time zone of latitude/longitude
|
||||
date = new DateTime(date.Year, date.Month, date.Day, 0, 0, 0, DateTimeKind.Utc);
|
||||
var utctime = date.AddHours(utc);
|
||||
var localTime = utcToLocalTime(utctime);
|
||||
|
||||
utc = (localTime - date).TotalHours;
|
||||
utc = FixValue(utc, 0, 24);
|
||||
return date.AddHours(utc);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
Sunrise/Sunset Algorithm
|
||||
|
||||
Source:
|
||||
Almanac for Computers, 1990
|
||||
published by Nautical Almanac Office
|
||||
United States Naval Observatory
|
||||
Washington, DC 20392
|
||||
|
||||
Inputs:
|
||||
day, month, year: date of sunrise/sunset
|
||||
latitude, longitude: location for sunrise/sunset
|
||||
zenith: Sun's zenith for sunrise/sunset
|
||||
offical = 90 degrees 50'
|
||||
civil = 96 degrees
|
||||
nautical = 102 degrees
|
||||
astronomical = 108 degrees
|
||||
|
||||
NOTE: longitude is positive for East and negative for West
|
||||
NOTE: the algorithm assumes the use of a calculator with the
|
||||
trig functions in "degree" (rather than "radian") mode. Most
|
||||
programming languages assume radian arguments, requiring back
|
||||
and forth convertions. The factor is 180/pi. So, for instance,
|
||||
the equation RA = atan(0.91764 * tan(L)) would be coded as RA
|
||||
= (180/pi)*atan(0.91764 * tan((pi/180)*L)) to give a degree
|
||||
answer with a degree input for L.
|
||||
|
||||
1. first calculate the day of the year
|
||||
|
||||
N1 = floor(275 * month / 9)
|
||||
N2 = floor((month + 9) / 12)
|
||||
N3 = (1 + floor((year - 4 * floor(year / 4) + 2) / 3))
|
||||
N = N1 - (N2 * N3) + day - 30
|
||||
|
||||
2. convert the longitude to hour value and calculate an approximate time
|
||||
|
||||
lngHour = longitude / 15
|
||||
|
||||
if rising time is desired:
|
||||
t = N + ((6 - lngHour) / 24)
|
||||
if setting time is desired:
|
||||
t = N + ((18 - lngHour) / 24)
|
||||
|
||||
3. calculate the Sun's mean anomaly
|
||||
|
||||
M = (0.9856 * t) - 3.289
|
||||
|
||||
4. calculate the Sun's true longitude
|
||||
|
||||
L = M + (1.916 * sin(M)) + (0.020 * sin(2 * M)) + 282.634
|
||||
NOTE: L potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
|
||||
|
||||
5a. calculate the Sun's right ascension
|
||||
|
||||
RA = atan(0.91764 * tan(L))
|
||||
NOTE: RA potentially needs to be adjusted into the range [0,360) by adding/subtracting 360
|
||||
|
||||
5b. right ascension value needs to be in the same quadrant as L
|
||||
|
||||
Lquadrant = (floor( L/90)) * 90
|
||||
RAquadrant = (floor(RA/90)) * 90
|
||||
RA = RA + (Lquadrant - RAquadrant)
|
||||
|
||||
5c. right ascension value needs to be converted into hours
|
||||
|
||||
RA = RA / 15
|
||||
|
||||
6. calculate the Sun's declination
|
||||
|
||||
sinDec = 0.39782 * sin(L)
|
||||
cosDec = cos(asin(sinDec))
|
||||
|
||||
7a. calculate the Sun's local hour angle
|
||||
|
||||
cosH = (cos(zenith) - (sinDec * sin(latitude))) / (cosDec * cos(latitude))
|
||||
|
||||
if (cosH > 1)
|
||||
the sun never rises on this location (on the specified date)
|
||||
if (cosH < -1)
|
||||
the sun never sets on this location (on the specified date)
|
||||
|
||||
7b. finish calculating H and convert into hours
|
||||
|
||||
if if rising time is desired:
|
||||
H = 360 - acos(cosH)
|
||||
if setting time is desired:
|
||||
H = acos(cosH)
|
||||
|
||||
H = H / 15
|
||||
|
||||
8. calculate local mean time of rising/setting
|
||||
|
||||
T = H + RA - (0.06571 * t) - 6.622
|
||||
|
||||
9. adjust back to UTC
|
||||
|
||||
UT = T - lngHour
|
||||
NOTE: UT potentially needs to be adjusted into the range [0,24) by adding/subtracting 24
|
||||
|
||||
10. convert UT value to local time zone of latitude/longitude
|
||||
|
||||
localT = UT + localOffset
|
||||
|
||||
*/
|
||||
}
|
||||
Reference in New Issue
Block a user